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Microscopic analysis of currency and stock exchange markets

L. Kador*
University of Bayreuth, Institute of Physics and ‘‘Bayreuther Institut fu¨r Makromoleku¨lforschung (BIMF),’’

D–95440 Bayreuth, Germany
~Received 25 January 1999!

Recently it was shown that distributions of short-term price fluctuations in foreign-currency exchange
exhibit striking similarities to those of velocity differences in turbulent flows. Similar profiles represent the
spectral-diffusion behavior of impurity molecules in disordered solids at low temperatures. It is demonstrated
that a microscopic statistical theory of the spectroscopic line shapes can be applied to the other two phenom-
ena. The theory interprets the financial data in terms of information which becomes available to the traders and
their reactions as a function of time. The analysis shows that there is no characteristic time scale in financial
markets, but that instead stretched-exponential or algebraic memory functions yield good agreement with the
price data. For an algebraic function, the theory yields truncated Le´vy distributions which are often observed
in stock exchange markets.@S1063-651X~99!07008-7#

PACS number~s!: 05.40.Fb, 78.40.Pg, 89.90.1n
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I. INTRODUCTION

Distributions of price fluctuations in currency and sto
exchange markets have been the subject of interdisciplin
studies for several years. In particular the fact that they
usually of non-Gaussian shape with distinctly more p
nounced wings has attracted much interest. The long, slo
decaying tails are the origin of frequent turbulences or e
crashes of the markets, because extreme price fluctua
occur with much higher probability as compared to Gauss
statistics. The leptokurtic shapes can often be empiric
desribed by Le´vy distributions@1,2# or truncated Le´vy distri-
butions @3,4#. An analysis of a very large data base whi
comprised all stock transactions in three major U.S. st
markets during a two-year period yielded an inverse-pow
law distribution with an exponent close to23 @5#. These
distributions are mainly valid for short-term price fluctu
tions with time intervals of some minutes. Similar hist
grams of price changes were also obtained from the num
cal study of a prototype model of a self-organized sto
market, although in this case they exhibited a sharp tip at
center@6#. The influence of interactions between the trad
on non-Gaussian shapes of price distributions was inve
gated by several authors@6–8#. A different approach was
based on the Langevin equation@9#.

Recently it was found that the short-term price fluctu
tions ~from 10 min up to two days! in currency exchange
between U.S.$ and German marks show a remarkably s
lar behavior as velocity differences in turbulent flows@10#.
In both fields, the distributions change their shapes in a c
acteristic manner between very short time differences~cur-
rency exchange! or spatial distances~turbulence! and longer
periods: The wings become less and less pronounced,
finally Gaussian profiles are approached. The histogra
could be well reproduced with superpositions of Gaussi
whose variances obey a log-normal distribution. The conv
gence toward a Gaussian shape corresponds to a decrea
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the log-normal variance for increasing time intervals or s
tial distances. The authors explained the similarity in t
behavior as being due to turbulent cascades in both phen
ena: Turbulent flows are characterized byenergycascades
from larger to smaller vortices, and for the financial data
transfer ofinformation from long- to short-term traders wa
invoked @10# ~see also Ref.@11#!.

Although the stochastic nature of turbulent flows and
nancial data was shown to be quantitatively different@12,13#,
the analogy in the behavior of the respective distribut
functions is striking. Similar statistical distributions are al
known in a completely different field of physics, namel
inhomogeneous spectroscopic line shapes of impurity m
ecules in solids. It will be shown in the following that
microscopic statistical theory of the line shapes can be u
to describe the financial and turbulent-flow data as well, a
that the similarities between the three phenomena hav
very fundamental statistical origin. For the case of the fin
cial data, the distribution of price fluctuations is obtained
the functional of a memory function, according to which t
influence of new information on the decisions of the trad
decreases with time. All observed distributions of real m
ket data can be reproduced with different forms of t
memory function. Algebraic functions, for example, yie
the analytical result of truncated Le´vy profiles. The paper is
organized as follows. Section II contains a brief review
the spectroscopic line shape theory. In Sec. III the theor
transformed to describe financial data, and in Sec. IV
resulting distributions for some specific memory functio
are discussed. The scaling behavior of these distribution
examined in Sec. V. Finally, the conclusions are given
Sec. VI.

II. MARKOFF-STONEHAM THEORY OF
INHOMOGENEOUS SPECTRAL LINE SHAPES

We consider a transparent solid matrix containing an
semble of dye molecules at low concentration such that
teractions between the dye molecules can be neglected
only the coupling to the surrounding matrix units plays
1441 © 1999 The American Physical Society
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1442 PRE 60L. KADOR
role. The dopant molecules are assumed to have an iso
optical absorption~or emission! line whose homogeneou
linewidth is negligibly narrow at low temperatures. In an
real solid there are imperfections such as point defects
dislocations, so that the dye molecules are located in e
ronments which differ from molecule to molecule to som
extent. We are interested in the resulting inhomogeneous
tribution of the molecular transition frequencies. A comp
hensive review article on inhomogeneous-broadening eff
was published by Stoneham@14#; the basic ideas date back
Markoff @15#.

According to the Markoff-Stoneham theory, the inhom
geneous line shape~i.e., the distribution of molecular absorp
tion frequencies! can be expressed by the ansatz

I ~n!5
1

VNE(V)
dR1•••E

(V)
dRNP~R1 , . . . ,RN!

3dS n2 (
n51

`

ñ~Rn!D . ~1!

n is the shift of the absorption frequency with respect to
value when the molecule is in vacuum, and the funct
ñ(Rn) describes the interaction with a matrix molecule
position Rn when the dopant is located at the coordina
origin. The contributions of the matrix units to the line sh
are assumed to be additive.P(R1 , . . . ,RN) is the combined
probability of finding matrix moleculen at positionRn for
n51, . . . ,N. It is normalized as

E
(V)

dR1•••E
(V)

dRNP~R1 , . . . ,RN!5VN, ~2!

with N being the total number of constituents of the so
sample of volumeV. I (n) is then normalized to unity,

E
2`

1`

I ~n!dn51. ~3!

SinceP(R1 , . . . ,RN) is a very complicated function which
is usually not known, it is often factorized intoN equal two-
particle solute-solvent distribution functions:

P~R1 , . . . ,RN!5 )
n51

N

g~Rn!. ~4!

This simplification is based on the assumption that the p
tions of the matrix molecules are statistically independe
which means that the nonzero volume of the molecule
neglected. The indexn can then be omitted. It is possible t
introduce correction terms to avoid this problem@16–18#,
but since we want to summarize only the basic ideas of
line shape theory we will not use them here. With appro
mation~4!, the expression for the inhomogeneous line pro
~1! can be cast in the form

I ~n!5
1

2pE2`

1`

dx einxe2J(x), ~5!

with
ted

nd
i-

is-
-
ts

-

e
n
t

i-
t,
is

e
-
e

J~x!5%E
(V)

dRg~R!~12e2 i ñ(R)x!, ~6!

where %5N/V is the number density of the matrix mo
ecules. Details of the calculation can be found in Re
@14,19#. The distribution of absorption frequencies is give
by the negative exponential of a characteristic functionJ(x)
which is a functional of the dye-matrix interaction potent
ñ(R).

In order to evaluate Eqs.~5! and ~6!, it is necessary to
specify the functionsg(R) and ñ(R). For the two-molecule
distribution function we use the simple step form

g~R!5H 1 for R>Rc

0 for R,Rc ,
~7!

which states that matrix units can be found anywhere outs
a spherical cavity of radiusRc around a dye molecule but no
within this cavity. For the interaction potential, we insert t
dipole-dipole form

ñ~R!52A cosuS Rc

R D 3

, ~8!

with u being the polar angle of the coordinate frame, and
constantA depending on the dipole moments of the solu
and the solvent molecule@19,20#. In weakly polar organic
systems, electrostatic interactions are usually not the m
origin of the solvent shift of dopant molecules; instead, t
dispersive forces yield the main contribution@21#. Neverthe-
less, the dipole-dipole interaction plays an important role i
special kind of inhomogeneous broadening, namely, spec
diffusion @22,23# of hole-burning@24# spectra in glasses o
polymers. Spectral diffusion consists in an increasing spre
ing of an ensemble of originally degenerate molecular
sorption lines with time; it is due to the coupling of the dy
molecules to the tunneling systems~TLS’s! of the glass
@25,26#. Hence in this case the parameter% in Eq. ~6! is not
the density of the matrix molecules but the density of t
TLS’s which is much lower@20#. This has important conse
quences for the line shapeI (n), as will be discussed below

After inserting Eqs.~7! and ~8! into Eq. ~6!, the angular
part of theR integration can be carried out analytically. Th
expression for the characteristic function then reads

J~x!5
4p

3
FAuxu E

0

Auxu S 12
sinu

u Ddu

u2
, ~9!

with F5%Rc
3 . The remainingu integral must be evaluate

numerically. Equation~9! together with Eq.~5! describes the
shape of the inhomogeneous line profileI (n) for the case of
dipole-dipole interaction. The important parameter which d
termines the shape isF, whereas the interaction strengthA
influences the scaling of the frequency axis. ForF˜`, only
a narrow region aroundx50 contributes significantly to the
Fourier integral in Eq.~5!. Since the Taylor expansion of Eq
~9! yields, for the lowest-order term,

lim
x˜0

J~x!5
2p

9
F~Ax!2, ~10!
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the resulting line shapeI (n) is Gaussian in this case. In th
opposite limitF˜0, on the other hand, the Fourier integr
is largely determined by the asymptotic behavior ofJ(x) for
uxu˜` which reads

lim
uxu˜`

J~x!5
p2

3
FAuxu. ~11!

The corresponding line profileI (n) is then of Lorentzian~or
Cauchy! shape. For intermediate values ofF, I (n) can be
characterized as a Lorentzian profile with cutoff wings,
was discussed in Ref.@20#.

Figure 1 contains a schematic representation of the ph
cal situations corresponding to the two limiting cases ofF
@1 @part ~a!# andF!1 @part ~b!#. In the first case, a large
bulky dye molecule is surrounded by much smaller ma
units so that there are many interaction partners alread
the first few solvent shells. Hence the central limit theor
applies and the inhomogeneous line shape is Gaussian,
spective of the form of the interaction potentialñ(R). This
situation is usually~approximately! given for regular inho-
mogeneous absorption profiles. It also holds true for
Brownian motion of small dust particles in a liquid due
collisions with the~even smaller! molecules of the liquid. If
the perturbers are very dilute, on the other hand, there
only a few nearest neighbors which yield the predomin
contributions to the line shift so that the wings of the inh
mogeneous profile decay much more slowly as compare
a normal distribution. The truncation of the wings which
obtained for any nonzero value ofF5%Rc

3 has the conse
quence that all moments of the distribution are finite,
should be the case for physical systems.

The Lorentz distribution is a special case of the mo
general Le´vy distribution which corresponds to

lim
uxu˜`

J~x!}uxua, ~12!

with 0,a,2 @cf. Eq. ~11!# and is obtained when the inte
action potentialñ(R) varies asR23/a. Also a general Le´vy
profile would be truncated in its wings due to the quadra
variation of J(x) aroundx50. A similar model was pub-

FIG. 1. Schematic representation of the two limiting cases th
dye molecule~central square! in a solid is surrounded by closel
packed@part ~a!# or dilute @part ~b!# perturbers which determine th
solvent shift of its absorption line. No perturbers can be loca
within a sphere of radiusRc around the dye molecule.
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lished by Zumofen and Klafter for the spectral-diffusio
propagator of single molecules in a solid@27#.

Experimental hole-burning data show that the spect
diffusion kernel is nearly always of Lorentzian sha
@20,23#. Clear deviations from this shape were observed o
in very few cases@28,29#. Hence, it can be concluded that th
TLS density in a glass at low temperatures is much sma
than the reciprocal volume of typical organic dye molecu
@20# and that the above approximation of neglecting corre
tions between the TLS’s@Eq. ~4!# is justified.

III. APPLICATION TO FINANCIAL MARKETS

The basic ideas of the Markoff-Stoneham theory of inh
mogeneous spectral line shapes can be applied to dist
tions of price changes in financial markets. Here we m
find a model to describe the impact on the traders to cha
the bid and ask prices. This influence can certainly not b
function of spatial coordinates, but will instead depend
the time which has elapsed since new information on
market has become available. Hence we are interested
memory function or temporal impact functiona f(t2t8) de-
scribing the influence of a piece of information which h
become available at timet8 on the decision of a trader to
propose or accept a price change at a later timet.t8. The
prefactora denotes the magnitude of the influence for fix
time delay; it will depend on the type of information an
will, therefore, itself be subject to a distribution. Also th
time functionf (t2t8) will probably depend on the informa
tion and the personality of the trader; however, we make
simplifying assumption that one general effective functi
f (t2t8) can be used to describe the market. Consequen
of this simplification will be discussed in Sec. VI. The fun
tion a f(t2t8) replaces the interaction potentialñ(R) in the
spectroscopic problem. The distribution of price changes
then be written as

P~s!5
1

TNE2`

1`

da1E
t2T

t

dt18•••E
2`

1`

daNE
t2T

t

3dtN8 h~a1 ,t18 ; . . . ;aN ,tN8 !dS s2 (
n51

N

anf ~ t2tn8!D
~13!

@cf. Eq. ~1!#, whereT is a very long period of time. In the
following we will consider the limitT˜`. The ‘‘multi-
event’’ distribution h(a1 ,t18 ; . . . ;aN ,tN8 ) is again approxi-
mated by the product ofN equal ‘‘one-event’’ distributions,

h~a1 ,t18 ; . . . ;aN ,tN8 !5 )
n51

N

g* ~an ,tn8!, ~14!

which denote the probability that a piece of information ha
ing an impact of magnitudean becomes available at timetn8 .
With these assumptions we obtain the following express
for the distribution of price changes during an element
time stepDt0:

p0~s!5
1

2pE2`

1`

dx eisxe2 j 0(x), ~15!

a

d
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1444 PRE 60L. KADOR
with

j 0~x!5%E
2`

t

dt8E
2`

1`

da g* ~a,t8!

3$12exp@2 ia f ~ t2t8!x#%. ~16!

%5 lim T˜` N/T is now the average temporal density of ne
information. We do not discriminate between different typ
of information. News coming from the market itself is in
cluded as well as news of other origins such as, for exam
the collapse of a large company or political changes i
country. Also, possible temporal variations of the inform
tion density ~for instance with periods of one day or on
week! are neglected.

The price change of a special item during a longer ti
interval DT is the sum of the individual elementary chang
in the intervalsDt0. Under the assumption that the chang
from one stepDt0 to the next are statistically independen
the distributionP(s) duringDT is given by repeated convo
lutions of p0(s) with itself @30#. Applying the convolution
theorem leads to the result

P~s!5
1

2pE2`

1`

dx eisxe2J(x), ~17!

with

J~x!5
DT

Dt0
%E

2`

t

dt8E
2`

1`

da g* ~a,t8!

3$12exp@2 ia f ~ t2t8!x#%. ~18!

Equations~17! and ~18! describe the distribution of price
changes for an ensemble of independently acting trad
when also successive changes are statistically independe
each other. Both assumptions are approximations. In par
lar the temporal independence is at odds with the presenc
a memory functionf (t2t8) in the system. The consequenc
of these approximations are discussed in Sec. VI.

In order to evaluate the integrals in Eq.~18!, we must
specify the functionsg* (a,t8) and f (t2t8). For g* (a,t8)
we choose a Gaussian distribution ofa and a step function in
t8,

g* ~a,t8!5
1

A2ps2
expF2

~a2b!2

2s2 Gg~ t2t8!, ~19!

with

g~ t2t8!5H 1 for t8<t2Dtc

0 for t8.t2Dtc .
~20!

The shape ofP(s) does not depend very sensitively on t
form of g* (a,t8), however. The basic ideas of the model a
sketched in Fig. 2. The decision of a trader for a price cha
at time t ~thick bar! is influenced by information obtained a
earlier timest8,t with the thin curves indicating its relativ
impact at timet. t2Dtc is the latest moment at which a ne
piece of information can contribute to the price change.
s

e,
a
-

e

s

rs,
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u-
of

e

After inserting Eqs.~19! and ~20! into Eq. ~18!, the a
integral can be solved analytically. The characteristic fu
tion J(x) then reads

Re@J~x!#5
DT

Dt0
%E

2`

t2DtcH 12cos@bx f~ t2t8!#

3expF2
1

2
s2x2f 2~ t2t8!G J dt8, ~21!

Im@J~x!#5
DT

Dt0
%E

2`

t2Dtc
sin@bx f~ t2t8!#

3expF2
1

2
s2x2f 2~ t2t8!Gdt8. ~22!

Equations~17!, ~21!, and ~22! are the general result of th
theory. According to these equations, the distributionP(s)
of price changes is a functional of the memory functionf (t
2t8). In Sec. IV,P(s) will be evaluated for several forms o
the memory function. Since the drift in high-frequency fina
cial data is much smaller than the statistical fluctuations@30#,
we will always setb50 so that Im@J(x)#50 and P(s) is
symmetrical. The calculation forbÞ0 would be straightfor-
ward, however.

IV. SPECIFIC FORMS OF THE MEMORY FUNCTION

A. Exponential function

As the first example we consider the case of an expon
tial impact function,

f ~ t2t8!5expS 2
t2t8

t D , ~23!

which means that the whole market has a character
memory timet. With Eq. ~23! and b50, Eq. ~21! can be
transformed to

FIG. 2. Schematic representation of the proposed model of p
finding in financial markets. A trader makes a price decision at ti
t ~thick bar!, based upon information which was received earlier
statistical timest8 ~thin solid lines!. The decaying curves indicat
the memory functionf (t2t8) which describes the relative impac
of a piece of information that depends on the time differenct
2t8. t2Dtc is the latest moment at which information must b
obtained in order to contribute to the price decision. The distri
tion of the impact strengtha @Eq. ~19!# has been omitted for clarity
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J~x!5FE
0

Guxu
~12e2u2

!
du

u
, ~24!

with

F5
DT

Dt0
%t, G5

s

A2
expS 2

Dtc

t D .

Figure 3 shows the distributionP(s) for different values ofF
in a semilogarithmic representation. For each curve the
ordinate axes were rescaled with the respective half-w
@full width at half maximum~FWHM!#; hence,P* (s* ) are
normalized dimensionless distributions with a FWHM of
As was discussed in Sec. II for the spectroscopic probl
the shape ofP(s) depends solely onF, whereasG deter-
mines the scaling of thes axis. Therefore, the normalize
form P* (s* ) ist not influenced byG. For F˜0 the shape is
distinctly non-Gaussian, but it tends toward Gaussian aF
increases, corresponding to the quadratic behavior ofJ(x)
aroundx50. In the non-Gaussian limit, the distribution
characterized by a sharpd-like spike ats50. WhenF be-
comes sufficiently large so that the spike disappears,P(s)
quickly approaches a normal distribution. A central sp
was observed in a numerical prototype model of stock
change markets@6#, but it does not occur in real market da
@3,5,10#. Hence we can conclude that real stock and forei
currency exchange markets are not characterized by one
tain memory time—a result which appears reasonable, g
the diversity of the involved people and of the informati
determining their behavior.

Mathematically, the spike is due to the fact that for
exponential memory function only information which b
comes available at timest8.t2t has a noticeable influenc
on the decisions of the traders. If the information density% is
so low that F is much smaller than 1, there is a sizab
fraction of the traders who receive no impact for a pr
change at all during the memory timet. Consequently, a
large number of price changes of amount zero will occur

B. Stretched-exponential function

Now we use a stretched-exponential~or Kohlrausch-
Williams-Watts! memory function of the form

FIG. 3. Distribution of price changes for an exponential mem
function and different values of the parameterF in a semilogarith-
mic representation.
o-
th

.
,

-

-
er-
n

f ~ t2t8!5expF2S t2t8

t D bG , ~25!

with 0,b,1. This yields for the characteristic function

J~x!5FE
0

Guxu
~12e2u2

!F S Dtc

t D b

1 ln
Guxu

u G (1/b)21 du

u
.

~26!

Here the parameters are

F5
DT

Dt0

%t

b
, G5

s

A2
expF2S Dtc

t D bG .
We will only consider the limitDtc!t in which the first
term in the square brackets vanishes. The corresponding
files of P(s) are shown in Fig. 4 forb50.2. Since there is
now a broad distribution of time constants in the system,
central spike is absent even for very small values ofF. The
calculated curves forF values between approximately 0.0
and 0.3 are very similar to the distributions of foreig
currency exchange data as published by Ghashghaieet al.
~Ref. @10#, Fig. 1!. Hence a stretched-exponential memo
function with an exponent around 0.2 seems to yield an
propriate description for this type of financial market.
simple mathematical description of the asymptotic behav
of P(s) does not seem to be possible in this case~in contrast
to the case of an algebraic memory function to be discus
below!.

C. Algebraic function

The last example that we consider explicitly forf (t2t8)
is an inverse-power-law function

f ~ t2t8!5S t

t2t8
D g

, ~27!

with exponentg.0. The characteristic function then read

J~x!5F~Guxu!1/gE
0

Guxu
~12e2u2

!
du

u111/g
, ~28!

with the parameters

y FIG. 4. Same as Fig. 3, for a stretched-exponential mem
function with exponentb50.2.
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F5
DT

Dt0

%Dtc

g
, G5

s

A2
S t

Dtc
D g

.

Whereas in the first two cases the cutoff timeDtc is not very
important and can be set equal to zero, it plays a deci
role in the algebraic model due to the divergence fort8˜t.
Both F andG depend critically onDtc . As discussed in Sec
II, the upper integration bound in Eq.~28! can be shifted to
infinity for large uxu, so that

lim
uxu˜`

J~x!}uxu1/g. ~29!

In the opposite limitx˜0, the function depends quadrat
cally onx. Hence forg.0.5 the distributionP(s) is again a
Lévy profile with cutoff wings. Its index is now given by
1/g. Truncated Le´vy distributions are not stable with respe
to convolution, but tend toward Gaussians@31,32#. This is in
contrast to true Le´vy distributions without cutoff~‘‘Lé vy
stable distributions’’!. Typical curves ofP(s) are plotted in
Fig. 5 for the caseg51.0. The agreement with the foreign
currency exchange data of Ref.@10# is fair but is not as good
as for the stretched-exponential memory function.

The short-term price changes of the New York Stock E
change@3#, on the other hand, are very well represented b
truncated Le´vy distribution. Figure 6 shows the distributio
for g50.7 andF50.02; cf. Fig. 2 of Ref.@3#. g50.7 corre-
sponds to the Le´vy index 1/g51.4060.05 within the error
margins which was obtained from a fit to the central part
the distribution of the stock exchange data@3#. The narrow
central part, the shoulders in the intermediate region,
also the fast decay for largeusu are well reproduced by the
model, although the shoulders are somewhat less pronou
than in the market data.

For a very large data base of stock price fluctuatio
which was compiled from three major U.S. stock markets,
inverse-power-law distribution with an exponent close t
23 was recently found@5#. The statistical model in conjunc
tion with an algebraic memory function is also able to rep
duce such a behavior, as Fig. 7 shows. The curves co
spond tog50.61 andF50.0003; they represent the sam
distribution in a semilogarithmic plot@part ~a!# and a double-
logarithmic plot @part ~b!#. The dashed straight line in Fig

FIG. 5. Same as Fig. 3, for an algebraic memory function w
exponentg51.0.
e

-
a

f

d

ed

s
n

-
e-

7~b! has a slope of22.77; it yields a good fit to the calcu
lated distribution over at least 1.5 orders of magnitude in
price changes.

At present there is no ‘‘microscopic’’ argument for a sp
cific choice of the memory function~stretched exponential o
algebraic!. These two functions were empirically found t
yield the best description for different types of financial ma
kets. Possible interpretations~e.g., in the framework of hu-
man psychology! require further studies.

FIG. 6. Distribution of price changes for an algebraic memo
function with exponentg50.7 andF50.02 in a semilogarithmic
representation.

FIG. 7. Distribution of price changes for an algebraic memo
function with exponentg50.61 andF50.0003 in semilogarithmic
@part ~a!# and double-logarithmic@part ~b!# representations. The
dashed straight line in~b! indicates a power-law behavior with ex
ponent22.77.
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At the end of this section it is illustrative to compare t
characteristic functionJ(x) for the three cases of an expo
nential function, a stretched-exponential function, and an
gebraic memory functionf (t2t8). This is done in Fig. 8. For
the latter two cases the same parameters as above have
used, i.e.,b50.2 ~stretched exponential! and g51.0 ~alge-
braic!. In each partJ/F has been plotted versusGx. J, F, and
Gx are dimensionless quantities. The general quadratic
havior aroundx50 is very visible, which leads to the trun
cation ~i.e., Gaussian decay! of P(s) at largeusu values.

V. SCALING BEHAVIOR

Mantegna and Stanley pointed out that the maxim
P(0) of the probability distribution of short-term price fluc

FIG. 8. Characteristic functionJ(Gx) ~divided by F) for the
three cases of exponential@part ~a!#, stretched-exponential@part ~b!;
b50.2#, and algebraic@part ~c!; g51.0# memory functions.
l-

een

e-

tuations often shows clear non-Gaussian scaling as a f
tion of the time intervalDT, i.e., thatP(0)}(DT)2k with
k.0.5 @3,12,13#. The scaling behavior of the above theore
ical distributions is depicted in Fig. 9, whereP(0) has been
plotted versusF in a double-logarithmic fashion. Parts~a!,
~b!, and ~c! again represent the three cases of exponen
stretched-exponential~with b50.2), and algebraic~with g
51.0) memory functions. The dimensionless parameterF is
proportional to the time intervalDT ~see above!. P(0) has

FIG. 9. Probability of return to the originP(s50) ~multiplied
by G) as a function of the dimensionless parameterF for the three
cases of exponential@part ~a!#, stretched-exponential@part ~b!; b
50.2#, and algebraic@part ~c!; g51.0# memory functions. The data
points were obtained from Eqs.~17! and~21! for discrete values of
F. The straight lines represent linear fits to the last three po
and—in~b! and~c!—the first three points in each part; their slop
are indicated.
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been multiplied byG, so that the data are independent of t
absolute volatility of the market.

Each part of Fig. 9 contains linear-regression lines for
data points with the three largest and—except for part~a!—
three smallestF values. In the limit of largeF, the maximum
of the distribution shows Gaussian scaling for all memo
functionsf (t2t8), i.e., the slope of the regression lines ten
to 20.5. In the opposite limitF˜0, on the other hand, th
behavior depends on the memory function. For the expon
tial function, the slope becomes very large due to
d-functionlike spike arounds50 ~a!. In this case it does no
make sense to investigate the scaling behavior and, co
spondingly, a linear fit has not been performed. With
stretched-exponential function,P(0) shows approximate
scaling for F values between 331024 and 331023, al-
though the data points are not perfectly located on the reg
sion line ~b!. In the algebraic case, however, the scaling
perfect forF˜0 ~c!, as can also be shown analytically@3#.
For a Lévy distribution with index 1/g the regression line ha
a slope of2g.

It should be emphasized that the calculations presente
this paper are solely based on a statistical ensemble mo
The temporal evolution of specific prices is not consider
Hence it is not possible to calculate the autocorrelation of
price changes or of their absolute values. The price chan
in real markets were found to have very short correlat
times on the order of a few minutes, but their absolute val
~or squares! exhibit long correlations with slow algebraic de
cay @30,33#. This is in accordance with the slowly decayin
memory functions which were discussed in the context of
present theory.

VI. SUMMARY AND CONCLUSIONS

It was shown that a microscopic statistical theory, wh
has long been used in optical spectroscopy to model inho
geneous spectral line shapes, can be applied to describe
tributions of price changes in financial markets. In th
model, the behavior of a set of independently acting trad
is analyzed in terms of information which has become av
able in the past, and whose impact on current decision
described by a memory function of the elapsed time. T
distribution of price changes is obtained as a functiona
the memory function. For a variety of memory functions t
distributions are distinctly non-Gaussian with long tails~i.e.,
leptokurtic!. This results from the fact that a comparative
small number of most recent pieces of information have
strongest impact on the price decisions so that the cen
limit theorem is not applicable. Far out in the wings, ho
ever, the distributions do exhibit a Gaussian-like decay a
hence, all their moments and in particular the variance
finite. For the special case of algebraic memory functio
f (t2t8)}(t2t8)2g with exponentg.0.5, truncated Le´vy
distributions are obtained. Recently published data of r
stock @3,5,13# and foreign-currency exchange markets@10#
can be reproduced very well with algebraic or stretch
exponential memory functions.

The finding that there is no characteristic time scale in
judgement of information by the traders corresponds to
often observed scaling behavior of financial data@3,12,13#. It
is not clear whether an algebraic or stretched-exponential
e
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is immanent to human psychology or whether different typ
of information~and different types of people! are connected
with very different time constants so that the superposition
exponential functions leads to the slow decay. The latter c
would be analogous, for instance, to the algebraic deca
transient photocurrents in disordered photoconductors a
pulsed optical excitation@34#. This question can perhaps b
addressed by comparing large sets of financial data@5# with
smaller subsets which belong to shorter time intervals
certain branches of a stock market. Such a ‘‘site-selectiv
analysis of financial data might be similarly successful
site-selective spectroscopic methods@24#. The latter yield in-
formation about dye-matrix interactions which is otherwi
obscured by the large inhomogeneous ensemble of do
molecules in a solid.

The above statistical model is related to continuous-ti
random walk theories which are used to describe trans
phenomena in disordered and in nonlinear systems,
which also yield probability distributions with long tail
@35–37#. Similar ideas can be applied to model velocity d
tributions in turbulent flows@38,39#. In this case the perturb
ers that yield additive contributions to the velocity comp
nent of a volume element along a given direction are
vortices in the liquid or gas which are assumed to be sta
tically independent. If the velocity in an individual vorte
decreases algebraically from the core toward the periph
Lévy laws are obtained. Truncated Le´vy laws result if the
vortex cores are smooth rather than having a singula
@38,39#. The similarity of the velocity distributions with
those of price changes in foreign-currency exchange@10#
suggests that the radial velocity dependence in turbulent
tices may be better described by stretched-exponen
laws—perhaps due to the presence of vortices of differ
sizes.

Very recently, distributions of flow velocities and flow
velocity gradients of ocean currents were calculated fr
satellite data@40#. In this example of large-scale, two
dimensional turbulence the distributions were either Gau
ian or they had similar leptokurtic shapes as the distributi
that were obtained in the laboratory experiment with wa
flowing through a nozzle@10#. Leptokurtic distributions were
found in particular in those parts of the oceans in which
eddy activity is high@40#.

There is an important quantitative difference between
price changes in financial markets and the theoretical ca
lations, which was not discussed so far. In the real mar
data of Ref. @10#, the transition from the strongest non
Gaussian to almost Gaussian shape stretches over more
2.5 orders of magnitude in the time differenceDT ~from
DT5640 s to beyondDT5163 840 s). According to the the
oretical profiles of Fig. 4, however, this change should n
cover more than about 1.5 orders of magnitude; the distri
tions corresponding to the data of Ref.@10# are approxi-
mately those betweenF50.01 and 0.3. The slow change ca
be ascribed to ‘‘coherence’’ or ‘‘herding effects’’@7,8#
which are not taken into account in the model: In reality, t
traders in financial markets do not act completely indep
dently of each other, and their actions during successive t
steps will also be correlated to a certain degree~correspond-
ing to the presence of a memory function!. Some events or
pieces of information give rise to similar reactions of a lar
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number of traders, thereby stretching the time span du
which the shape of the distribution changes. This seems t
true in particular for very short time intervals. For fluctu
tions of stock prices ranging from 1 to 1000 min, no sign
cant change of the shape of the distributions was obser
although they can be well described by truncated Le´vy dis-
tributions @3#. It should be emphasized that in the prese
model the leptokurtic distributions are not intrinsically due
coherence effects but coherence effects are only assum
be responsible for the slow transition to Gaussians. In
case of the turbulent-flow data, the transition from no
Gaussian to Gaussian shape occurs between 3.3h and 138h
~in the units of Ref.@10#!; i.e., it really covers about 1.5
orders of magnitude of the distance parameter. This prob
must be treated in three-dimensional space, however, so
the situation is not completely equivalent.

The theoretical investigation of distributions of pric
changes in financial markets began in 1900 when Bache
calculated that the price changes should follow a Gaus
-

n-

tt.

Y

.

g
be

d,

t

to
e
-

m
at

er
n

distribution whose width increases as the square root of t
@41#. In this way he found a description of Brownian motio
five years before Einstein published his famous paper
particle diffusion@42#. Starting in the 1960s, it was empir
cally discovered that actual market data do not obey Ga
ian statistics, but usually follow leptokurtic distributions wit
much longer tails@1,2#. The present work suggests that
nancial markets probably have a closer analogy with spec
diffusion of dye molecules in disordered solids than w
particle diffusion.
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@38# I. A. Min, I. Mezić, and A. Leonard, Phys. Fluids8, 1169
~1996!.

@39# B. Dubrulle and J.-Ph. Laval, Eur. Phys. J. B4, 143 ~1998!.
@40# S. G. Llewellyn Smith and S. T. Gille, Phys. Rev. Lett.81,

5249 ~1998!.
@41# L. Bachelier, Ann. Sci. E´ cole Norm. Super.3, 21 ~1900!.
@42# A. Einstein, Ann. Phys.~N.Y.! 17, 549 ~1905!.


